Department of Biological Sciences

Lisa Moore Ph.D.

Professor of Biology
Lisa Moore

Office Location

476B Science ("C" wing)



Academic Degrees

  • Ph.D., Civil and Environmental Engineering, Massachusetts Institute of Technology, 1997
  • M.A., Liberal Education, St. John's College Graduate Institute, 1989
  • B.S., Biochemistry, University of Oregon, 1987


Dr. Moore joined the Biology Department at USM in 2000 after postdoctoral work at MIT. She is a microbial ecologist and a leading expert on Prochlorococcus, perhaps the most abundant life form on Earth. In 2015, she served as a Visiting Research Fellow in the Paulsen Laboratory at the Department of Chemical and Biomolecular Sciences, Macquarie University in Australia.

Dr. Moore regularly teaches the first semester of the introductory biology sequence, which focuses on cell biology (BIO 105, 106), Microbiology (BIO 281, 311), and Microbiology lab (BIO 282). She also teaches Microbial Ecology (BIO 415/515, 416/516).

In Spring 2016, Dr. Moore received the Faculty Senate Award for Excellence in Scholarship.

Research Interests

My overall research interests focus on microbial phenotypic trait characterization. I have carried out extensive research on the ecology and physiology of two genera of marine cyanobacterium which form a major component of the marine food web: Prochlorococcus, the world’s most abundant photosynthetic microbe, and Synechococcus, which is more ubiquitous throughout different oceanic regimes. My primary research has focused on examining the physiological response to various ecologically significant environmental parameters, such as light, temperature and nutrients, which has been useful in helping understand spatial distributions of these marine cyanobacteria. I am also interested in the composition and distribution of natural populations of marine cyanobacteria communities as well as other members of the marine microbial web, such as photosynthetic picoeukaryotic phytoplankton and bacterioplankton, associated with marine cyanobactera. I have just been funded to expand my culture-based research to include growth optimization studies of marine microalgae that have potential in producing bioproducts. Additionally, I will be starting an examination of the phytoplankton and bacterioplankton communities associated with the Penobscot Estuary and Bay in mid-coast Maine.


In addition to my work on phytoplankton ecology and physiology, I also am working on a project that will enable the collection of phenotypic information from published taxonomic literature in order to create large taxon-character matrices, which can then be used by scientists to help with analyzing, annotating and visualizing the Tree of Life. The matrices also can be combined with phylogenomic trees for conducting phylogenetic comparative analyses to test evolutionary hypotheses.


Specific projects:

Marine cyanobacteria ecophysiology

Microalgal Growth Optimization (NEW)

Biogeography of Picoplankton

Penobscot Estuary and Bay Phytoplankton Communities (NEW)

Microbial Phenomics Project for the Tree of Life


For more detailed information about each of these projects, please click here.

Recent Publications

Berube, P.M., S.J. Biller, A.G. Kent, J. W. Berta-Thompson, S. E. Roggensack, K. Roache-Johnson^, M. Ackerman#, L. R. Moore, J. D. Meisel, D. Sher, L. R. Thompson, L. Campbell, A. C. Martiny, and S. W. Chisholm. 2014. Physiology and evolution of nitrogen acquisition in Prochlorococcus. ISME Journal, (28 October 2014) | doi:10.1038/ismej.2014.211. ^USM student, #Southern Maine Community College student

Biller, S., P. Berube, J. Berta-Thompson, L. Kelly, S. Roggensack, L. Awad, K. Roache-Johnson^, H. Ding, S. J. Giovannoni, G. Rocap, L. R. Moore, S. W. Chisholm. 2014. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Scientific Data, 1, Article number: 140034 | doi:10.1038/sdata.2014.34. ^USM student

Ahlgren, N., A. Noble, A. Patton, K. Roache-Johnson^, L. Jackson^, D. Robinson^, C. McKay, L.R. Moore, M. Saito, G. Rocap. 2014. The unique trace metal and mixed layer conditions of the Costa Rica upwelling dome support a distinct and dense community of Synechococcus. Limnology and Oceanography, 59(6), 2014, 2166-2184 | DOI: 10.4319/lo.2014.59.6.2166. ^USM student

Moore, L. R. 2013. More mixotrophy in the marine microbial mix. Proceedings of the National Academy of Sciences. 110:8323-8324.

K. Krumhardt*,^, K. Callnan*,^, K. Roache-Johnson^, T. Swett^, D. Robinson^, E.A. Nahas Reistetter, J.K. Saunders, G. Rocap, L.R. Moore. 2013. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: uptake physiology. Environmental Microbiology 15:2114-2128. *these authors contributed equally to this work; ^USM student

E.A. Nahas Reistetter, K. Krumhardt^, K. Callnan^, K. Roache-Johnson^, J.K. Saunders, L.R. Moore, G. Rocap. 2013. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 II: gene expression. Environmental Microbiology. 15:2129-2143. ^USM student