THE EFFECTS OF SPECIFIC TYPES OF ATTENTION ON YOUTH

WITH PROBLEM BEHAVIOR

By

Iride Piechocki

B.S. Syracuse University, 2001

M.S. University of Southern Maine, 2008

A DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Psychology

(in School Psychology)

The University of Southern Maine

August, 2010

Advisory Committee:

Rachel Brown-Chidsey, Associate Professor of School Psychology, Chair

Mark Steege, Professor of School Psychology

Heather Alvarez, Clinical Director of Sebago Alliance Day Treatment Program
Specific Attention and Problem Behavior

Library Rights Statement
Specific Attention and Problem Behavior

THE EFFECTS OF SPECIFIC TYPES OF ATTENTION ON
YOUTH WITH PROBLEM BEHAVIOR

By Iride Piechocki, MS

Dissertation Advisor: Dr. Rachel Brown-Chidsey

An Abstract of the Dissertation Presented
In Partial Fulfillment of the Requirements for the
Degree of Doctor of Psychology
(In School Psychology)
August, 2010

The effects of specific types of attention were examined with six youth attending two different programs for students with Emotional and Behavioral Disabilities (EBD) or Disruptive Behavior Disorders (DBD). This study looked at the effects of attention in the forms of empathy and help on the rates of on-task behavior and task completion. All participants engaged in escape-maintained problem behavior when presented with academic demands prior to intervention. This study looked at whether help or empathy could serve as a motivating operation (MO) by becoming a potentially positive reinforcer that abolishes task escape as a negative reinforcer. Results indicated that all participants had higher levels of on-task behavior in the help condition and 5 out of 6 participants had similar results in the empathy condition. The highest levels of attempted math problems were found in the condition where help was available. Results indicate that specific types of attention may decrease problematic behavior and increase task completion with students that typically exhibit high rates of noncompliance. Implications and suggestions for future investigation are discussed.
ACKNOWLEDGEMENTS

I’d like to thank my committee
Dr. Heather Alvarez
Dr. Rachel Brown-Chidsey
Dr. Mark Steege
For assisting me with this project from concept to completion

A special thanks to all my “teachers,” for this would not be possible without you
Alexis (Berry) Kiburis
Brenda McKinley
Samantha Mowatt
Lisa Sims
Dr. Doreen Sperber-Weiss
Erin Sullivan
David Tytell
Caroline Wallace
Danielle Zurawiecki

Thank you to all the school administrators, faculty, and program directors that assisted me in this project; especially Dr. Joe Bresnahan and Dr. Heather Alvarez.

I am forever grateful for the cooperation of the students involved in this project.

Finally, I am appreciative of the support and encouragement I received along the way from Ryan and my parents.
TABLE OF CONTENTS

LIST OF TABLES...vii
LIST OF FIGURES..vii

Chapter
1. LITERATURE REVIEW...1
2. METHOD...8
 Participants...8
 Materials...10
 Dependent Measures...11
 Research Design...12
 Procedure..13
 Data Analysis..17
3. RESULTS..17
 Results across Setting1..17
 Results across Setting2..22
4. DISCUSSION..28
 Effects of Attention in the form of Empathy or Help.....................33
 Limitations...34
 Future Research..37
5. SUMMARY...37
REFERENCES...39
APPENDICES...42
BIOGRAPHY OF AUTHOR..45
LIST OF TABLES

Table 1: DEMOGRAPHIC INFORMATION……………………………………….8
Table 2: SCHEDULE OF TEACHERS………………………………………..9
Table 3: TASK COMPLETION RESULTS SETTING 1…………………………..19
Table 4: TASK COMPLETION RESULTS SETTING 2…………………………28

LIST OF FIGURES

Figure 1: CARL RESULTS………………………………………………………20
Figure 2: DAN RESULTS………………………………………………………21
Figure 3: BILL RESULTS………………………………………………………29
Figure 4: WILL RESULTS………………………………………………………30
Figure 5: VAN RESULTS………………………………………………………31
Figure 6: KEN RESULTS………………………………………………………32
Specific Attention and Problem Behavior

Introduction and Literature Review

Children and adolescents that exhibit symptoms of Disruptive Behavior Disorders or Mood Disorders, often display behavior that can be considered problematic in the school setting. In addition to meeting the DSM-IV-TR (American Psychiatric Association, 2000) diagnostic criteria for conditions such as Oppositional Defiant Disorder, Attention Deficit Hyperactivity Disorder, or Major Depressive Disorder, many of these adolescents have associated characteristics for these disorders such as difficulties with peers, behaviors which suggest a lack of concern for others, and noncompliance. Given that youth with these diagnoses are likely to engage in behaviors that differ from the norm, and there remains a lack of tolerance for problem behavior in the general education classroom, such students may not have had as much exposure to positive attention from the teacher, paraprofessionals or school personnel when compared with other students.

Traditional methods of handling problem behavior within the schools have included removing the student from the classroom, which then minimizes the amount of time that student is exposed to instruction. When students with problem behaviors are missing out on instruction, naturally, it would be more difficult to keep up with grade level expectations. Daly III, Martens, Witt, and Dool (1997) suggest that there are five reasonable hypotheses for academic deficits; the material is too hard, the student has not had to do it that way before, the student has not had enough help with material, the student has not spent enough time working on material, or the student just doesn’t want to do it. Given that refusal to follow instructions, reluctance to complete academic tasks, and difficulty remaining seated are a few of the symptoms for these students, it becomes
Specific Attention and Problem Behavior

challenging to distinguish if the student has a performance deficit or a skill deficit. This distinction is important as it drives the appropriate intervention that would likely remediate the academic problem. Youth who cannot do the expected task are perhaps deficient in the skill (skill deficit) and would benefit most from a skill-building intervention, whereas youth who will not do the expected task (performance deficit) would benefit most from an intervention that increases motivation (VanDerHeyden & Witt, 2008).

Daly et al. (1997) provided additional details related to why students may have not have had enough help to perform or engage in the academic task. One of the reasons was insufficient prompting and feedback for active responding. If a student tends to engage in problematic behaviors, they may not be the favorite student in the class. Teachers may be less likely to help or assist a student who is refusing to comply with the assigned activity. This deprivation of feedback and positive attention may be contributing to the reason the student is refusing in the first place.

Carr and Durand (1985) suggested that it may be helpful to view problem behaviors as a form of nonverbal communication. They identified that low levels of adult attention or high levels of task difficulty were discriminative of problem behavior with four children (two males, two females) ages 7, 13, and 14. After teaching these children functional ways to solicit attention or assistance, problem behavior decreased. It is important to consider that the problem behavior resulting from an increase in task difficulty decreased with the request for assistance; whereas the problem behavior that was a result of low levels of adult attention decreased with the request for praise. These results emphasize the importance of matching an intervention that is functionally
Specific Attention and Problem Behavior

equivalent to the specific nature of the problematic behavior. It also demonstrates how adult assistance can remove the stimuli that evokes the problem behavior, and decrease escape-maintained problem behavior.

Given that escape and attention can serve as functions for problem behavior, it is important to consider both of them. The deprivation of attention can alter the reinforcing value of attention, making it a positive reinforcer when it ordinarily isn’t. Assistance and empathy can be viewed as specific types of attention. It can be hypothesized that a deprivation of helpful attention may increase the reinforcing value of helpful attention, when ordinarily attention is not deemed to be a positive reinforcer. Therefore, if a teacher was helpful toward a student exhibiting behavioral difficulties in the classroom, this might increase productivity and decrease problem behaviors in order for the student to access that helpful attention. We can apply the same hypothesis to attention in the form of empathy. If students with problematic behaviors have been deprived of empathic attention, it may increase the reinforcing value of that type of attention.

Empathy is a complex concept due to the many constructs and definitions that exist for the term (Preston & de Waal, 2002). Among researchers, there is a lack of consensus concerning the exact nature of empathy, however certain themes have developed. It is important to distinguish between the different constructs of empathy in order to better define and study this variable. The first distinction to make is between dispositional empathy and state empathy (Preston & de Wall, 2002). Dispositional empathy is viewed as a personality trait, whereas state empathy is seen as a “situation specific cognitive-affective state (p.262).” A majority of the empirically-based literature focuses on empathy as either cognitive or affective (Duan & Hill, 1996; Preston & de
Specific Attention and Problem Behavior

Waal, 2002). Gladstein (1983) defined cognitive empathy as intellectually taking the role or perspective of another person as opposed to affective empathy which is responding to another’s emotion with the same emotion. Preston and de Waal (2002) proposed researchers use the term intellectual empathy to refer to the cognitive process and avoid confusion with empathic emotions or affective empathy.

In a pilot study by Laidlaw, Kaufman, Sargeant, MacLeod, Blake, and Simpson (2007), intellectual empathy was found to be a necessary component for exemplary physician communication with adolescents. This study video-taped 40 physicians throughout participation in four different stations where trained adolescents were acting as patients with sexual health issues. Seven quantitative measures were used to assess physician process skills, capacities, and characteristics. One of these measures was the Medical Interaction Process System (MIPS) which has a specific subscale that looks at empathy skills in the physician-patient interactions. The most exemplary communicators (MEC) were determined as the top 15% of the physician participants and the least exemplary communicators (LEC) made up the bottom 15%. These two groups were compared and it was found that the “MEC group were more likely to both demonstrate and highlight the value of empathy and the importance of trying to support rather than judge patients in their interactions (p. 159).” These results suggest that the amount of empathic statements that clinicians use could affect the quality of patient services. The findings could have implications for school-based professionals such as psychologists and teachers who work with students who have significant psychopathology.

Another possible factor in understanding student engagement and behavior is known as a motivating operation. A motivating operation (MO) is an event or stimulus
Specific Attention and Problem Behavior

condition that temporarily alters the reinforcing or punishing effectiveness of other events and the frequency of behaviors relevant to those events as consequences (Michael, 1982, 1993, 2004). Motivating operations have both value altering and behavior altering effects. Of the value altering effects, MO’s can have an establishing or an abolishing effect on a reinforcer or punisher.

Decreasing rates of problem behavior by manipulating motivating operations has been demonstrated across many studies (Call, Wacker, Ringdahl, Cooper-Brown, & Boelter, 2004; McComas, Thompson, & Johnson, 2003; O’Reilly, Lacey, & Lancioni, 2000; Horner, Day, & Day, 1997). McComas et al. (2003) studied the effects that presession attention would have on escape-maintained problem behavior and attention-maintained problem behavior. This study specifically examined attention as a motivating operation (MO) and how various durations of presession attention affect problem behavior. There were five participants aged 8-12; four boys and one girl. Functional analyses suggested two participants had functional relations between problem behavior and attention, two participants had functional relations between problem behavior and escape, and one participant had functional relations between problem behavior and both attention and escape. Pre/session attention was given for either zero (ignore), five, or ten minutes before the attention condition. The attention condition was a ten minute session during which the participants were instructed to engage in seatwork or a preferred activity. Ten seconds of attention in the form of a reprimand was provided contingent on problem behavior during the session. Problem behaviors were observed only in the sessions with no presession attention (the presession ignore). An additional experiment was conducted with an escape condition. The same presession attention conditions were
Specific Attention and Problem Behavior

used except the adult instructed the participant to complete an academic assignment. After this instruction was given, the adult either ignored the participant for the remaining 10 minutes (ignore condition) or gave continuous attention in the form of “social interaction and encouragement regarding the completion of the assigned task (p. 304).” The escape condition consisted of the adult instructing the participants to do independent seat-work with ten seconds of escape contingent on problem behavior.

Results of McComas et al. (2003) showed that problem behavior occurred in escape conditions regardless of whether the presession condition was the attention or the ignore condition. This indicates that presession attention was not an effective MO manipulation for escape-maintained problem behavior. This is an important finding because of the general similarity between the presession condition and escape-maintained problem behavior. Unanswered by the McComas et al. study was whether a functionally non-equivalent condition such as help or empathy would yield similar results. Specifically, could help or empathy establish attention as a positive reinforcer for engagement that could compete with escape. If either types of attention were shown to serve such a function, it would indicate whether or not they act as an MO. Some studies have examined this question.

Call et al. (2004) assessed attention and its influence on noncompliance with six typically developing children, aged 4-8, in an outpatient setting. There were two experiments. The first one examined whether continuous attention during demand conditions could alter noncompliance, while the second investigated task difficulty and task amount with the presence of attention and escape. Experiment 1 demonstrated that parental attention decreased rates of noncompliance that were escape-maintained.
Specific Attention and Problem Behavior

Experiment 2 consisted of two phases. The first phase was designed to show how problem behavior occurred contingent on the presentation of a difficult task without attention. The second phase had the following conditions: decrease in task amount plus escape, decrease in task difficulty plus escape, demand plus attention plus escape, and decreased task difficulty plus attention, plus escape. Results indicated that all manipulations of the independent variable showed varying levels of noncompliance that were less than the results in the first phase. The addition of attention was sufficient for half of the participants to reduce the reinforcing effects of escape from demands indicating that it can function as an MO.

Results of the Call et al. (2004) study indicated that levels of noncompliance can be reduced through changes in antecedent variables, including adding potential positive reinforcers to the task situation. While presession attention didn’t alter escape-maintained problem behavior during demand sessions in the McComas et al. (2003) study, continuous attention reduced noncompliance for 3 of the 6 participants in the Call et al. study. These manipulations of motivating operations can potentially set the occasion for desirable behavior rather than problem behavior, and the use of extinction or punishment procedures may not be necessary. Therefore, it is possible to avoid more intrusive interventions that may produce undesirable side effects (Goh & Iwata, 1994; Lerman, Iwata, & Wallace, 1999).

The purpose of the current study was to evaluate the effects of either helpful or empathic statements on the occurrence of negatively reinforced problem behavior and task completion with children and adolescents in programs for emotional and behavioral difficulties. This study sought to extend the research of Call et al. (2004) by
Specific Attention and Problem Behavior

hypothesizing that rates of noncompliance would be reduced by adding a potential positive reinforcer of attention in the form of helpful or empathic statements to the task situation. It was also hypothesized that the delivery of helpful or empathic statements to a participant with escape-maintained behaviors would abolish escape as a negative reinforcer. This would provide evidence of help or empathy functioning as a motivating operation. This population and setting were chosen because problematic behavior generally contributes to how the participants become enrolled in the program. This study was conducted across two different settings and will be referred to as Setting 1 and Setting 2. The specific hypotheses addressed in the study were: Can specific types of attention act as a motivating operation, and will the delivery of empathic or helpful statements to a student with behavioral difficulties in the classroom increase task completion and decrease problem behavior?

General Method

Participants and Setting

Participants. The participating students were typically developing males between the ages of 9-16, in grades 4-10, who qualified for special education services under the categories of emotional disability, learning disability, and other health impairment. There were seven participants in all (see Table 1 for demographic information) and all names were changed to protect their identities. Any participants taking medications were stable and had been taking them for at least 3 months, with the exception of one who was hospitalized and discontinued from the study. The participants’ cognitive assessment scores ranged from the average to below average level for intelligence (e.g., 75 - 115). None of the participants were in question for any type of cognitive impairment. All
Specific Attention and Problem Behavior

participants had a history of engaging in escape-maintained behavior. The types of behaviors that the participants demonstrated were ‘bargaining’ or distracting behavior when presented with an academic task. When the academic demand wasn’t removed, the behavior usually became more problematic, escalating into insulting the teacher, yelling, and/or throwing items.

Table 1
Demographic Information

<table>
<thead>
<tr>
<th>Participant</th>
<th>Age (years)</th>
<th>Race</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl</td>
<td>15</td>
<td>Caucasian</td>
<td>Mood disorder NOS & rule out psychotic disorder</td>
</tr>
<tr>
<td>Dan</td>
<td>16</td>
<td>Caucasian</td>
<td>ADHD</td>
</tr>
<tr>
<td>Bill</td>
<td>9</td>
<td>Latino</td>
<td>ADHD</td>
</tr>
<tr>
<td>Van</td>
<td>10</td>
<td>African American</td>
<td>ADHD, Learning Disorder</td>
</tr>
<tr>
<td>Ken</td>
<td>10</td>
<td>African American</td>
<td>ADHD, Learning Disorder</td>
</tr>
<tr>
<td>Will</td>
<td>11</td>
<td>African American</td>
<td>ADHD, Disruptive Behavior Disorder NOS, Learning Disorder</td>
</tr>
<tr>
<td>Lenny</td>
<td>10</td>
<td>African American</td>
<td>ADHD, Bi Polar Disorder, Learning Disorder</td>
</tr>
</tbody>
</table>

Teachers. The "teachers" in this study were graduate students in a school psychology masters or doctoral program. The participants had no prior knowledge of and had never met any of the teachers prior to this study. During the different conditions, each graduate student had the role of the teacher, while the researcher collected data. The graduate students alternated roles to control for teacher effects (Table 2). For approximately 23% of the sessions, a second teacher was present to collect inter-observer agreement (IOA) data.
Specific Attention and Problem Behavior

Table 2
Schedule of Teachers to the specific intervention and student

<table>
<thead>
<tr>
<th>Student</th>
<th>Baseline</th>
<th>Help</th>
<th>Empathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T 1</td>
<td>T 2</td>
<td>T 3</td>
</tr>
<tr>
<td>2</td>
<td>T 2</td>
<td>T 3</td>
<td>T 1</td>
</tr>
<tr>
<td>3</td>
<td>T 3</td>
<td>T 1</td>
<td>T 2</td>
</tr>
</tbody>
</table>

Setting. Participants attended either a day treatment program for students with emotional and behavioral difficulties, or a transitional behavioral disabilities program for students with severe emotional disturbance. Both programs were behaviorally-based and had point systems/incentives built into the daily routine. These settings were chosen because enrollment is usually contingent on being unsuccessful in a less restrictive environment of a general education classroom setting and there are often accompanying emotional or behavioral concerns. Noncompliant and/or disruptive behaviors incompatible with engagement in the school curriculum are typically seen in both programs.

Materials

The materials that were used during this study included a table, several chairs, teacher scripts, and math computation worksheets. Task materials were selected based on a task-difficulty assessment and included color-coded math worksheets. All math worksheets used in the study were created in a way to be of equal difficulty at each student's instructional level in order to keep task demands constant. Worksheets were created on the website www.interventioncentral.com. Teachers had color coded scripts (see Appendices A-C) that matched the corresponding math worksheet, depending on
Specific Attention and Problem Behavior

which condition was being conducted. Data collection sheets were used to gather data regarding the participant’s behavior in each condition: baseline, help, and empathy.

Task Difficulty Assessment. Sets of curriculum-based math measures (CBM) were administered to the participants so that the appropriate level of math skill was determined for each student (for additional information see Daly, Chafouleas, & Skinner, 2005). This was necessary in order to reduce the occurrence of task refusal or off-task behaviors related to a skill deficit. Measures from the AIMSweb CBM system were used to conduct a survey level assessment (SLA). SLA involves having the student complete successively easier math problems to indentify the student’s current math instruction level. The AIMSweb measures include three math problem sets per grade level. The instructional level for math skills for this study was the highest ability level at which the student’s median score reflected at least 90% accuracy. This skill level was used to determine appropriate math worksheets for the experimental conditions.

Target Behaviors

There were two primary target behaviors that were addressed in this study: noncompliance and task completion. For the purposes of this study, problem behavior consisted of off-task behaviors, and was generally defined as any behavior that was incompatible with work completion. Off-task behavior consisted of motor, verbal, and passive behavior. Off-task motor was defined as the student being out of seat, physically moving body to look under the mobile chalkboard, playing with objects and/or other students that required movement in or out of the seat, making inappropriate gestures, hitting, throwing things, and fighting with others. Off-task verbal was defined as calling out to another student, inappropriate vocalizations, talking with teacher about anything
Specific Attention and Problem Behavior

other than the task, and making noises. Off-Task passive was defined as looking around without moving body, staring at pencil, staring at wall, or playing with an object that does not require movement in or out of the seat.

Task completion was defined as the completion of the assigned math problems within the given worksheet(s). The number of problems attempted and crossed off were converted to percentages of problems attempted and problems crossed out. Also, the number of digits correct (task accuracy) was converted to a percentage of digits correct.

Data Collection

Task completion was measured with three types of outcome data: percentage of problems attempted, percentage of problems crossed off, and accuracy of problems completed. The problems attempted percentage score was measured by calculating the total number of questions that were answered and then dividing that by the number of questions answered plus the number of questions crossed out and then multiplying by 100 (e.g. 10/13 = .77*100 = 77%). The problems crossed out percentage score were measured by calculating the number of problems that were crossed out and then dividing the number of problems crossed plus the number of problems answered and then multiplied by 100 (e.g. 3/13 = .23*100 = 23%) The task accuracy percentage score (digits correct) was derived by calculating the percentage of digits correct divided by the total number of digits attempted and multiplied by 100 (e.g. 8/10 = .80*100 = 80% accurate). In a situation in which the participant’s paper was difficult to read, attempts were made to decipher the results. If the results were indecipherable, it was scored as attempted and incorrect.
Specific Attention and Problem Behavior

Observers recorded off-task behaviors using a 10-second partial interval recording procedure. A second observer simultaneously and independently collected inter-observer agreement data while sitting on a different side of the classroom for approximately 23% of the sessions. For all conditions, off-task behavior was quantified by dividing the total number of intervals in which the student was off-task by the total number of intervals and then multiplying that number by 100 (e.g. 12/60 = .2*100 = 20% off task).

Experimental Design

This study utilized a single-subject randomized alternating treatments design. This design is intended to change a single behavior and control for different stimulus conditions in an intervention. For this study it was used to control for the empathic or helpful statements apart from the teacher delivering them. The teachers took a different role with each student and there was a randomized order to the different interventions. See Table 2 for teacher assignment and schedule. This design allowed for the comparison of attention in the form of help, attention in the form of empathy, and neither help nor empathy in the intervention conditions described below. These three conditions were implemented with subjects in a randomized order to control for order effects. For each condition, including baseline, at least 3 sessions were conducted.

Independent variables

Independent variables to be considered in this study were (a) teacher attention in the form of help, and (b) teacher attention in the form of empathy. Helpful statements were defined as statements that were focused on the math worksheet and offering assistance or reminding the student that help was available. The teacher was focused on the math worksheet while delivering the statements. Examples of helpful statements
Specific Attention and Problem Behavior

included; “Would you like some help with this one?” “Let’s look at this one together,” and “Let me know if you need any help.” Empathic statements were defined as using intellectual empathy and responding in a manner that communicates that understanding. The teacher was focused on the student during this condition. Examples of empathic statements included: “I can tell this is quite challenging, I used to struggle with math too”; “You’re right, this is tough!”; “This wasn’t my favorite subject either”; “It seems like you have to work twice as hard on these worksheets”; “If I were in your shoes, I’d probably be feeling the same way”.

Procedure

This study was conducted in two steps. The first step involved a descriptive analysis using procedures similar to those included in Steege & Watson (2009). The second step was to evaluate the effects of the presence and absence of empathic or helpful statements on problem behavior and task completion during math activities. The lengths of the experimental sessions were held constant at 10 minutes each. A total of at least nine sessions (three for each condition) were conducted with each student, except for one student who had numerous absences. As noted above, this intervention controlled for teacher effects by having the teachers rotate roles with different students. For example, if Teacher 1 provided attention in the form of empathy with participant 1, then she would provide help for participant 2 and baseline for participant 3.

Descriptive Behavioral Analysis. In order to identify the maintaining contingencies for the problem behaviors, an anecdotal observation, review of records, and structured interview were conducted initially to formulate initial hypotheses. Then these hypotheses regarding function of behavior were verified with a structured observation
Specific Attention and Problem Behavior

within the classroom. This was conducted using the guidelines of Steege & Watson (2009). For both settings, pre-experimental observations were conducted in the students' classrooms during math instruction. Up to three structured observations were used to examine the function of the participants’ behaviors. All observations were conducted in the participants’ assigned classrooms. Before beginning an observation, the observer informed the staff that she would be watching the participant and asked the staff to act as they typically would in that setting. No other instructions were given. For Setting 2, Functional Behavioral Assessment records were available for all participants because it was a requirement for admission to their program. The observations and FBA records were used to confirm that each student engaged in escape-maintained problem behavior. All participants demonstrated multiple functions to their problematic behavior within the classroom. Specifically, all participants demonstrated attention-maintained and escape-maintained behavior.

Baseline condition. The baseline condition involved 10 minute sessions in which the student was given a math worksheet at his instructional level. After the teacher presented the math worksheet, she read the script, and then sat away from the participant. If the student engaged in off-task or disruptive behaviors that were incompatible with completing the math worksheet, the teacher would begin to time the behavior. Participant noncompliance that continued for over 60 seconds produced a termination from instruction. The teacher simply said, “Let’s take a break.”

Help condition (Intervention 1). The help condition involved 10 min task completion sessions in which the student was given a math worksheet at his instructional level. After the teacher presented the math worksheet, she read the script, and then
Specific Attention and Problem Behavior

provided attention in the form of help on a fixed rate schedule of every 30 seconds. Help was delivered at the start of the worksheet and then every 30 seconds. If the student engaged in off-task or disruptive behaviors that were incompatible with completing the math worksheet, the teacher continued to give a helpful prompt every 30 seconds for a total of two times. Participant problem behavior after 2 prompts for help (approximately 1 minute) resulted in the termination of that trial by stating “Ok, let's end this and take a break.”

Empathy condition (Intervention 2). The empathy condition involved 10 min task completion sessions in which the student was given a math worksheet at his instructional level. After the teacher presented the math worksheet, she read the script, and then provided attention in the form of empathy on a fixed rate schedule of every 30 seconds. Empathy was delivered at the start of the worksheet and then every 30 seconds. If the student engaged in off-task or disruptive behaviors that were incompatible with completing the math worksheet, the teacher continued to give a helpful prompt every 30 seconds for a total of two times. Participant problem behavior after 2 empathic prompts (approximately 1 minute) resulted in the termination of that trial by stating “Ok, let's end this and take a break.”

Interobserver Agreement

Interval-by-interval inter-observer agreement was calculated for approximately 23% of all sessions in Setting 2 by dividing the number of agreements by all agreements plus disagreements and multiplying by 100 for each session. Mean total agreement was 90% with a range of 82%-100%. Due to staff limitations, no IOA data were collected in Setting 1.
Specific Attention and Problem Behavior

Treatment Integrity

Treatment integrity data was collected on the independent variables to validate the treatment integrity of the intervention. Data collectors were provided with a list of helpful and empathic statements to keep count of how many were delivered per session and to verify that the statements were specifically helpful, or empathic, depending on the session. Data collectors were also instructed to keep track of how often the statements were delivered to ensure the fixed rate of 30 seconds was being implemented. Treatment integrity was assessed for at least 50% of the sessions in Setting 1 and averaged 100%. Treatment integrity was assessed for at least 23% of the sessions in Setting 2 and averaged 100%.

Data Analysis

Obtained data were evaluated using visual analysis and comparison of off-task behaviors across conditions. The effects of empathic statements by the teachers during work demand conditions were compared with attention in the form of the help condition and the baseline condition.

Results

Setting 1

There were two participants in Setting 1: Carl and Dan. Carl was a 15 year old Caucasian male in the 9th grade. He had received a diagnosis of Mood Disorder NOS, with a rule out of psychotic disorder. He was classified as a student with an Emotional Disturbance within special education. Carl had a history of shutting down and refusing to engage with anyone when upset. He had difficulties with age appropriate peer relations and would become overwhelmed in an unfamiliar environment. Carl preferred engaging
Specific Attention and Problem Behavior

with program staff and adults than with peers. Results of the task-difficulty assessment indicated that Carl could multiply two digits by two digits, divide one digit from four digits, subtract three digits from three digits with borrowing, and add up to four three-digit numbers with carrying. Results of descriptive analysis showed that attention from staff, escape from peers, and escape from demands typically followed problem behavior. Carl tended to complete assigned activities depending on certain antecedent events. If he was visibly upset about something that happened prior to the assigned tasks, he usually refused to complete it.

Dan was a 16 year old Caucasian male in the 10th grade. He carried a diagnosis of Attention Deficit Hyperactivity Disorder. He was eligible for special education under the condition of Other Health Impaired. Dan had a history of refusing to complete school work. He would engage with peers during times when it was not appropriate to do so. Dan had a history of not listening to and disobeying teachers and not following school rules. Results of the task-difficulty assessment indicated that Dan could multiply two digits by two digits, divide 1 digit from four digits, subtract four digits from four digits with borrowing, and add up to four three-digit numbers with carrying. Results of descriptive analysis indicated that attention from peers, and escape from demands typically coincided with problem behavior. Dan demonstrated a pattern of avoiding assigned activities and engaging in off-task behaviors until a teacher was standing right next to him. When the teacher was next to him, Dan completed the tasks; as soon as the teacher left, Dan began to engage in off-task behaviors again.

Both participants attended a Day Treatment program with self-contained classrooms that provided support across all school subjects. This program was located in
Specific Attention and Problem Behavior

a suburban school district within the northeast United States. All intervention sessions were conducted in a separate classroom apart from peers and were limited to 10 minutes each. The conditions, while randomly assigned to the respective teachers, were not randomly conducted because the timing of when the conditions could be run was dependent on the availability of the teachers and the students' schedules. This change in procedure for Carl and Dan resulted in a modified design for setting 1. Specifically, the resulting procedures and data were an ABC design instead of an alternating treatments design. This change may have created order effects for Carl and Dan's resulting data.

Results from Carl’s performance in the different conditions are presented in Table 3 and graphs are displayed in Figure 1. Carl engaged in lower levels of off-task behavior across all conditions when compared to his off-task behavior prior to intervention. Specifically, Carl's pre-intervention off-task data showed a range of 7% -100%. During the baseline condition, Carl's was off-task the least (0% across all three trials) when compared to the help condition (range = 2%-5%) and the empathy condition (range = 0%-2%). Carl obtained the highest results for digits correct on his math worksheets within the help condition (mdn = 94%) when compared to the empathy (mdn = 77%) and baseline (mdn = 87%) conditions. Carl had high levels of attempted math problems across all conditions (range = 92% - 100%).

Results from Dan’s performance in the different conditions are presented in Table 3 and graphs are displayed in Figure 2. Dan engaged in lower levels of off-task behavior across all conditions (range = 0%-20%) when compared to his off-task behavior prior to intervention (range = 58%-80%). Specifically, he was off-task the least during the help condition (mdn = 2%), then the empathy condition (mdn=7%), and then baseline (mdn =
Specific Attention and Problem Behavior

17%). Dan obtained the highest results for digits correct on his math worksheets within the help condition (mdn = 97%) when compared to the Empathy condition (mdn = 87%) and Baseline (mdn = 95%). Dan obtained the highest levels of attempted math problems during the help condition (mdn = 100%) when compared to the empathy condition (mdn = 53%) and Baseline (mdn = 69%).

Table 3. Task Completion Setting 1

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Digits</td>
<td>Items</td>
<td>Items</td>
<td>Digits</td>
<td>Items</td>
<td>Items</td>
<td>Digits</td>
<td>Items</td>
<td>Items</td>
<td>Digits</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td></td>
<td>Correct</td>
<td>attempt</td>
<td>x-out</td>
<td>Correct</td>
<td>attempt</td>
<td>x-out</td>
<td>Correct</td>
<td>attempt</td>
<td>x-out</td>
<td>Correct</td>
<td>attempt</td>
<td>x-out</td>
</tr>
<tr>
<td>Carl</td>
<td>71/82</td>
<td>22/24</td>
<td>2/24</td>
<td>34/44</td>
<td>13/14</td>
<td>1/14</td>
<td>48/51</td>
<td>15/15</td>
<td>0</td>
<td>61/67</td>
<td>18/18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>61/67</td>
<td>18/18</td>
<td>0</td>
<td>44/57</td>
<td>16/16</td>
<td>0</td>
<td>34/38</td>
<td>11/12</td>
<td>1/12</td>
<td>54/77</td>
<td>21/21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>54/77</td>
<td>21/21</td>
<td>0</td>
<td>56/70</td>
<td>19/20</td>
<td>1/20</td>
<td>56/58</td>
<td>17/18</td>
<td>1/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dan</td>
<td>39/41</td>
<td>11/16</td>
<td>5/16</td>
<td>16/29</td>
<td>8/15</td>
<td>7/15</td>
<td>34/35</td>
<td>10/10</td>
<td>0</td>
<td>36/38</td>
<td>10/17</td>
<td>7/17</td>
</tr>
<tr>
<td></td>
<td>27/29</td>
<td>9/13</td>
<td>4/13</td>
<td>26/27</td>
<td>9/16</td>
<td>7/16</td>
<td>39/39</td>
<td>10/10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall results from Setting 1 showed similar patterns of responding. There was not much differentiation between conditions with regards to on-task behavior. Both Carl and Dan demonstrated much lower levels of off-task behavior during the intervention conditions than what was typically seen within the classroom. This could be in part due to the participants being removed from the classroom and set up in a quieter classroom with less distraction. These results indicated that when the student was removed from their typical classroom environment and provided with an academic task that is usually aversive, the rates of off-task behavior decrease, thus improving on-task behavior. Both participants had the highest accuracy with math problem completion within the Help condition. Carl had similar results in each condition for the number of problems that were attempted, whereas Dan attempted the most math problems in the Help condition. This indicates that both participants appeared to be most accurate and have lowest levels
Specific Attention and Problem Behavior

Figure 1. Carl

Off Task Behavior

Digits Correct

Problems Attempted
Figure 2. Dan

- Off Task Behavior
- Digits Correct
- Problems Attempted
Specific Attention and Problem Behavior

of off-task behavior during the Help condition. It also indicates that both participants decreased off-task behavior when removed from the typical distractions of their classroom and paired with an adult in a different classroom.

Setting 2

There were five participants in Setting 2: Bill, Van, Ken, Will, and Lenny. Bill, a 9 year old Latino male in the 4th grade, had a diagnosis of Attention Deficit Hyperactivity Disorder. He was classified as a student with an Emotional Disturbance within special education. Bill had a history of verbally instigating and getting into altercations with peers, refusing to complete school work, disobeying teachers, and making verbal threats to adults and peers. Results of task-difficulty assessment indicated that Bill could multiply some single digit numbers by single digits, subtract three digits from three digits with no borrowing, and add up to four three-digit numbers with carrying. Results of descriptive analysis showed that attention from staff, attention from peers, and escape from demands typically coincided with and followed off-task or problem behavior. Bill tended to be fidgety when presented with an academic task. He would move around frequently and demonstrated difficulty sitting still. Bill was easily distracted and quickly became engaged in a dialog between peers or staff. If an argument was occurring elsewhere in the classroom, he often said something loudly to contribute and thus became part of the altercation. While engaged in altercations and classroom disputes, no academic tasks were completed.

Will, an 11 year old African American male in the 5th grade, was diagnosed with Attention Deficit Hyperactivity Disorder, Disruptive Behavior Disorder NOS, and a Learning Disorder. Will was eligible for special education under the condition of
Emotional Disturbance. He has a history of engaging in verbal and physical altercations with peers, disrespect towards adults, not following directions, and refusing to engage in school work. Results of the task-difficulty assessment indicated that Will could multiply a single digit number by a single digit, subtract three digits from three digits with no borrowing, and add up to three three-digit numbers with carrying. Results of descriptive analysis showed that attention from staff, attention from peers, and escape from demands typically coincided with or followed problem behavior. Will tended to sit at his desk and stare down which resulted in him not completing the assigned activities. He engaged in side conversations and instigated peers, which often resulted in physical altercation and removal from the classroom. Removal from the classroom always resulted in attention from staff, and escape from demands.

Van, a 10 year old African American male in the 5th grade, carried a diagnosis of Attention Deficit Hyperactivity Disorder and a Learning Disorder. He was eligible for special education under the condition of Emotional Disturbance. Van had a history of fire setting and engaging in destructive behaviors. Van often withdrew and shut down when angry and engaged in destruction of property. Results of the task-difficulty assessment indicated that Van could subtract three digits from three digits with no borrowing, and add up to three three-digit numbers with carrying. Results of descriptive analysis showed that attention from staff, escape from peers, and escape from demands typically coincided with or followed problem behavior. Van tended to do whatever it took to get out of an assigned activity. He would try to bargain with the teacher, engage in conversation, or give the appearance of completing work, when he really wasn’t. Van also engaged in problematic behaviors when visibly upset about something which was
Specific Attention and Problem Behavior

usually followed by staff directing him into their office (escape from peers, attention from staff).

Ken, a 10 year old African American male in the 5th grade, had a diagnosis of Attention Deficit Hyperactivity Disorder and a Learning Disorder. Ken was eligible for special education under the condition of Emotional Disturbance. He had a history of engaging in destructive behavior and being impulsive in his decision making. Ken had a history of instigating his peers and engaging in both verbal and physical altercations. He had a history of refusing to complete school work and not following directions. Results of the task-difficulty assessment indicated that Ken could subtract two digits from two digits with no borrowing, and add up to two three-digit numbers with no carrying.

Results of descriptive analysis showed that attention from staff, attention from peers, and escape from demands typically coincided with or followed problem behavior. Ken tended to engage in impulsive decision making and would jump right into a physical altercation if it was in front of him. If he was visibly upset about something that happened prior to the assigned tasks, he became withdrawn and refused to complete it. Continuation of this behavior usually resulted in a removal from the classroom (i.e., access staff attention, escape from demands, and escape from peers).

Lenny, a 10 year old African American male in the 4th grade had diagnoses of Attention Deficit Hyperactivity Disorder, Bipolar Disorder, and a Learning Disorder. He was eligible for special education under the disabling condition of Emotional Disturbance. Results of the task-difficulty assessment indicated that Lenny could multiply two digits by one digit, divide 1 digit from two digits, subtract four digits from four digits with borrowing, and add up to four three-digit numbers with carrying. Lenny
Specific Attention and Problem Behavior

was discontinued from the study during the descriptive analysis due to instability with current medication regime and a subsequent psychiatric hospitalization.

Setting 2 was in a transitional behavioral disabilities program for students with severe emotional disturbance located in an urban school district on the east coast of the United States. All intervention sessions were conducted in the back of the classroom with a mobile chalkboard serving as a partition between the table and chairs and the rest of the classroom.

Results from Bill’s performance in the different conditions are presented in Table 4 and graphs are displayed in Figure 3. Bill engaged in lower levels of off-task behavior across Empathy (range = 2%-20%) and Help conditions (range = 7%-15%) when compared to his off-task behavior prior to intervention (range =33%-38%) and Baseline (range = 32%-92%). Bill obtained the highest results for digits correct on his math worksheets within the help condition (mdn = 82%) when compared to the empathy condition (mdn = 67%) and baseline (mdn = 66%). Bill obtained the highest levels of attempted math problems during the help condition (mdn = 100%) when compared to the empathy condition (mdn = 78%) and baseline (mdn = 64%).

Results from Will’s performance in the different conditions are presented in Table 4 and graphs are displayed in Figure 4. Will engaged in lower levels of off-task behavior across the help and empathy conditions (help range = 2%-8%, empathy range = 3%-15%) when compared to his off-task behavior prior to intervention (range = 20%-27%) and Baseline (range = 18%-25%). Will obtained the highest results for digits correct on his math worksheets during the baseline condition (mdn = 99%) when compared to the empathy condition (mdn = 91%) and help condition (mdn = 91%). Will obtained the
high levels of attempted math problems across the help condition (mdn = 100%) when compared to the empathy condition (mdn = 74%) and baseline (mdn = 42%). A reason Will may have scored highest for digits correct within the baseline condition could be because he also attempted the least amount of math problems in this condition, thereby crossing off the more difficult problems and completing ones that were easier.

Results from Van’s performance in the different conditions are presented in Table 4 and graphs are displayed in Figure 5. Van engaged in lower levels of off-task behavior during the help condition (range = 7%-33%) when compared to his off-task behavior prior to intervention (range =55%-100%), baseline (range =25%-88%), and empathy (range =10-80%) conditions. Van obtained very strong results for digits correct on his math worksheets across all conditions (baseline mdn = 99%, empathy mdn = 100%, help mdn = 99%). Van obtained the highest levels of attempted math problems during the help condition (mdn = 100%) when compared to the empathy condition (mdn = 8%) and baseline (mdn = 14%). A reason Will may have scored equally high on digits correct across all conditions could be because he attempted far fewer math problems in the empathy and baseline conditions. Therefore the problems he was attempting in these conditions were ones that were perhaps the easiest to complete without help.

Results from Ken’s performance in the different conditions are presented in Table 4 and graphs are displayed in Figure 6. Ken engaged in lower levels of off-task behavior during the help and empathy conditions (empathy range = 8%-22%, help range = 10%-12%) when compared to his off-task behavior prior to intervention (range = 23%-33%) and baseline (range = 10%-43%). Ken obtained the highest results for digits correct on his math worksheets within the help condition (mdn = 97%) when compared to the
Specific Attention and Problem Behavior

empathy condition (mdn = 92%) and baseline condition (mdn = 86%). Ken obtained the highest levels of attempted math problems during the help condition (mdn = 100) when compared to the empathy condition (mdn = 75%) and baseline (mdn = 86%). It is important to consider that Ken only participated in two trials in the help condition and the lack of an additional trial may be skewing or impacting his results.

Table 4. Task Completion Setting 2

Participant	Baseline			Empathy			Help		
	Digits Correct	Items attempted	Items attempted x-out	Digits Correct	Items attempted	Items attempted x-out	Digits Correct	Items attempted	Items attempted x-out
Bill	33/36	13/14	1/14	47/53	15/18	3/18	40/43	12/12	0
	0/1	0	0	65/71	20/30	10/30	25/25	9/9	0
	44/44	13/26	13/26	60/81	21/27	6/27	36/36	9/9	0
	58/66	17/22	5/22	58/72	18/29	11/29	38/45	13/13	0
	67/88	24/28	4/28	44/48	20/28	4/28	21/30	9/9	0
	30/30	10/10	0						
Will	60/65	26/51	25/51	55/59	22/24	2/24	49/57	19/19	0
	67/68	30/80	50/80	42/47	17/24	7/24	50/55	20/20	0
	68/69	32/79	47/79	59/64	26/35	9/35	62/62	23/23	0
	73/74	43/100	57/100	62/70	26/35	9/35	43/47	18/18	0
Van	40/42	18/29	11/29	35/35	16/40	24/40	41/42	15/15	0
	2/2	1/20	19/20	26/29	14/40	26/40	28/28	10/10	0
	8/8	3/20	17/20	7/7	3/40	37/40	30/30	10/10	0
	40/41	17/140	123/140	15/15	5/120	115/120	55/58	20/20	0
	9/9	3/80	77/80						
Ken	67/78	31/78	47/78	73/79	30/45	15/45	46/47	20/20	0
	84/101	44/45	1/45	117/120	45/60	15/60	69/72	30/30	0
	56/62	26/33	7/33	100/111	46/47	1/47			

Overall, results from Setting 2 showed distinct patterns of responding for each participant. All four participants (Bill, Will, Van, and Ken) showed a decrease in off-task behavior (increase in on-task behavior) during the help condition. All four participants also attempted the greatest percentage of math problems during the help condition compared with the other conditions. Bill, Will, and Ken showed a decrease in off–task behavior during the empathy condition when compared with previous rates of behavior.
Specific Attention and Problem Behavior

Figure 3. Bill

Off-Task Behavior

Percentage of Digits Correct

Percentage of Math Problems Attempted
Figure 4. Will

Specific Attention and Problem Behavior
Specific Attention and Problem Behavior

Figure 5. Van
Figure 6. Ken

Specific Attention and Problem Behavior

Off-Task Behavior

Digits Correct

Attempted Math Problems
Specific Attention and Problem Behavior

and the baseline condition. Will and Van demonstrated high levels of accuracy during the baseline condition; however, this may be attributed to the fact that both participants also crossed-out a large percentage of the math problems in the baseline condition, thus completing math problems that may have been easier.

Discussion

In this study, antecedent variables were altered by providing a potential positive reinforcer in the form of attention (help or empathy). Findings varied per student, but supported the hypothesis that providing attention to students when task demands were difficult reduced escape behaviors. The results of this study were consistent with those of previous research (e.g., Call et al., 2004) in which altering antecedent variables influenced rates of problem behavior. Results were also consistent with Daly et al. (1997) who found that content-specific assistance was beneficial for students with academic deficits.

Attention in the form of help appeared to decrease the likelihood of problem behavior across all participants. In the conditions where there was no access to help (empathy and baseline) most participants crossed off the math problems that were considered difficult and only completed problems for which they did not require help. Notably, there were higher rates of crossed off problems for baseline and empathy conditions. By contrast, during the help condition, the participants crossed off fewer problems and completed problems with higher accuracy. This supports the findings of Carr and Durand (1985) in that providing adult assistance removed the stimuli that evoked problem behaviors. This indicates that attention in the form of help may be an effective intervention in decreasing problem behavior and increasing academic output.
Specific Attention and Problem Behavior

These results also indicate that perhaps some of the off-task behavior seen within this population is more related to skill deficits than performance deficits. VanDerHeyden and Witt (2008) reported that distinctions between skill and performance deficits are frequently inaccurate because they are only based on casual observation. The findings from this study validate the importance of "can't do/won't do" assessments with this population to evaluate the underlying cause behind inadequate academic performance. The lack of skill or lack of motivation may increase the likelihood of engaging in problem behavior. The application of a skill-based intervention alone (such as help from the teacher) may be sufficient to eliminate or significantly reduce problem behaviors with a student experiencing a skill deficit. This aligns with Daly et al. (1997) in that providing help with academic material is beneficial for students with academic deficits. This also aligns with Carr and Durand (1985) in that problem behavior may be a type of nonverbal communication that requires the teaching of a skill (functional way to communicate) that provides access to specific reinforcement.

Attention in the form of empathy appeared to decrease levels of off-task behavior for five of the six participants; however, it did not improve math scores to the extent that the help condition did. This indicates that while attention in the form of empathy may improve behavior, it did not necessarily improve academic output or skills. The results indicate that empathy did serve as a motivating operation because it established teacher attention as an effective reinforcer. Attention in the form of empathy also abolished task escape as an effective reinforcer for five of the six participants. Therefore, empathy may function as a positive reinforcer that temporarily changes the value of behaviors that are not functionally equivalent. This supports and extends the results of Call et al. (2004) for
Specific Attention and Problem Behavior

which rates of problem behavior were reduced through changes in antecedent variables such as adding potential positive reinforcers to the task situation.

The results indicate that there may be benefit from specific types of attention in the school setting. Moreover, the addition of attention in the form of help or empathy may decrease problem behaviors in students who are experiencing academic difficulties. Specifically, attention in the form of help resulted in a decrease in problem behavior and an increase in task completion across all students. While attention in the form of empathy did not increase task accuracy to the extent that help did, it did decrease problem behaviors across five of the six participants. These results suggest that adding specific types of attention to a teacher’s repertoire may be beneficial for effective classroom management and increased student engagement.

There are a number of limitations to this study. First, a descriptive analysis was conducted instead of a functional analysis of the student’s problem behavior within the classroom. A functional analysis would have allowed for the assessment of problem behavior under conditions in which the antecedent events and consequences could have been experimentally manipulated. Results from a functional analysis could have provided more accurate screening data by identifying all the maintaining contingencies. There were multiple functions of behavior for all participants in this study. While it was necessary for the participants to engage in escape-maintained behavior related to academics, most of the participants also engaged in attention-maintained behavior as well, either in relation to their peers or staff.

A few limitations occurred with Setting 1. First, participants were removed from their natural environment, which may have altered behavior regardless of the condition
Specific Attention and Problem Behavior

because of the individualized attention and minimized distractions in the experimental setting. Because of this change in the environment, it is difficult to attribute any change in behavior to the independent variables. Second, due to staffing and availability of teachers, the treatment conditions were not randomized and there were no inter-observer agreement data. The procedures used in setting 1 resulted in an ABC design instead of an alternating treatments design. This design may have created order effects such that the students' behaviors during the second condition were influenced by the preceding condition. There was no way to determine this as there was not a reversal in the design or withdrawal of the treatment once implemented. This limits the validity of the results from setting 1.

A limitation in Setting 2 involved the difficulty to execute a true alternating treatments design. Scheduling of the teachers and absences of the students contributed to some challenges with alternating treatments. With some students, the design reflected more of an ABC design due to the same condition being implemented more than once before the following condition. This may have contributed to order effects and limits the validity of the results in setting 2.

Another limitation to this study is that individualized attention may change the behavior regardless of the intervention in place. Therefore, regardless of which treatment condition the participant was in, he was still sitting at a table with a novel staff member, apart from peers. Participants were also aware of the 10 minute time commitment per each trial. It may be that the students' performance was influenced by knowing the session would end in 10 minutes.
Specific Attention and Problem Behavior

The challenge of isolating the independent variable presented another limitation to this study. Different types of empathy have been identified in the literature, such as dispositional or state empathy. While the focus of this study was on cognitive-state (intellectual) empathy, it is hard to control for any inherent dispositional or characteristic empathy that the teachers may have demonstrated. For example, if one of the teachers was more of an empathic person (dispositional empathy), even his or her helpful statements may have come across as empathic in comparison to a teacher who did not convey as much dispositional empathy. When an individual with high levels of dispositional empathy acts in a neutral manner, this may be an uncharacteristic approach for this individual, which would make it obvious to the participant that the teacher was behaving atypically. Another potential limitation was the perceptions of the participants. If a teacher did not appear genuinely empathic, it may have affected the participant’s response. Another potential confound was the relationship developed between the participant and the teacher. Regardless of the different roles, the participant still may have preferred one teacher over another and therefore responded accordingly.

A final limitation to this study was the inability to measure if deprivation of empathy or help existed for the participants in their classroom settings, and whether this deprivation would have made a difference in the results. It was assumed that there was a deprivation of one or the other at some point due to the history of academic and behavioral difficulties that each participant experienced. Withholding all help and empathy from the participants during the school day would have been unethical, thus this limitation may be irresolvable.
Specific Attention and Problem Behavior

Future research is needed to demonstrate the robustness of these findings across other populations, other settings, and other academic scenarios. It is recommended that further investigation of help and empathy as MO’s utilize a functional analysis of behavior prior to the intervention in order to fully understand and identify maintaining contingencies. It might have been more accurate to analyze the maintaining reinforcers and the MO’s that altered the value of the maintaining reinforcers. Nonetheless, this study showed that assistance and empathy may be important antecedents for the classroom setting. Given that this was a single-case design study, future replication studies are needed to establish external validity.

Summary

While this study required the identification of the function of the behavior, antecedent manipulation is a simple alternative to other interventions. It eliminates the need for more intrusive interventions (extinction or punishment) that may produce undesirable side effects. Call et al. (2004) found noncompliant behaviors to be potentially maintained by multiple schedules and highly individualized. The motivating condition that empathic and helpful statements can have on participants may not work for every student with emotional or behavioral problems. Furthermore, empathic or helpful statements may not be enough to significantly decrease problem behavior, depending on the strength of the contingencies already in place.

Overall these results support and extend the findings of previous research on altering antecedent events or manipulating MO’s as a method to decrease problem behavior. Both helpful and empathic statements abolished task escape as a negative reinforcer and lead to an increase in on-task behavior for five of the six participants.
Specific Attention and Problem Behavior

Therefore, this study provides a minimally intrusive intervention for students with emotional or behavioral difficulties and can serve as a foundation for future studies.
REFERENCES

Specific Attention and Problem Behavior

Specific Attention and Problem Behavior

APPENDIX A.

Instructional Script for Condition 1 (baseline)

“We’re going to work on a math worksheet for 10 minutes. I want you to write your answers to several kinds of math problems. Look at each problem carefully before you answer it. You will start here (demonstrate by pointing to first problem) and work ACROSS the page. Then go to the next row. Try to work EACH problem. If you come to one YOU REALLY DON’T KNOW HOW TO DO, put an ‘X’ through it and go to the next one. Do you have any questions? (Pause) You may begin (START TIMER!!)"

(Teacher then sits at another desk/table and provides no attention)

- **If student asks for help, say:**
 - Just do the best you can....... if you can’t figure it out, just put an ‘X’ through it

- **When time is up – say:**
 - OK, that’s all we’re going to do for that worksheet

If student engages in off-task behavior that is incompatible with working on math, allow 1 minute to pass (2 vibrations) and if the student does not re-engage – say: “Ok, lets end this and take a break”
Specific Attention and Problem Behavior

APPENDIX B.

Instructional Script for Condition 2 (help only)

“We’re going to work on a math worksheet for 10 minutes. I want you to write your answers to several kinds of math problems. Look at each problem carefully before you answer it.
We will start here (demonstrate by pointing to first problem) and work ACROSS the page. Then go to the next row.
Try to work EACH problem. If you come to one YOU REALLY DON’T KNOW HOW TO DO, I’ll HELP you.
Do you have any questions? (Pause - START TIMER)
Okay! Let’s look at #1 together
Do you remember how to do this type of math problem?”

(A helping statement is delivered every 30 seconds)
(Make sure the focus is on the paper/math worksheet, NOT the student)

If student is doing ok, say:

- Are these making sense so far?
- Is that one ok?
- Let me know if you need any help
- I’m here if you need me to help

If student is struggling, not doing work, or has crossed one out, say:

- Let me show you how to do this one
- Let’s look at this one together
- Would you like some help with that one
- Which part is confusing
- This is similar to the one you just did

- **When time is up – say:**
 - OK, that’s all we’re going to do for that worksheet

If student engages in off-task behavior that is incompatible with working on math, allow 1 minute to pass (2 vibrations) and if the student does not re-engage – say: “Ok, lets end this and take a break”
Specific Attention and Problem Behavior

APPENDIX C. **Instructional Script for Condition 3 (empathy only)**

“We’re going to work on a math worksheet for 10 minutes. I want you to write your answers to several kinds of math problems. Look at each problem carefully before you answer it.

We will start here (demonstrate by pointing to first problem) and *work ACROSS the page. Then go to the next row.*

Try to work EACH problem. If you come to one YOU REALLY DON’T KNOW HOW TO DO, put an ‘X’ through it and go to the next one.

Do you have any questions? (Pause)

(***Make eye contact with the student***) I know Math worksheets aren’t the most fun thing to be doing right now

You may begin” (**START TIMER**)

(An empathic statement is delivered every 30 seconds)

(***Make sure the focus in on the student, NOT the math worksheet***)

If student is doing ok, say: If student is struggling or not doing work, say:

- These seem easy for you
- This one seems harder than the others
- Seems like you’re doing ok
- I can tell this is quite challenging
- That one didn’t seem too bad for you
- I used to have a hard time with division too
- Looks like you’ve got that down
- Some of these are tough
- Addition looks like something you find easy
- This wasn’t my favorite subject either
- • When time is up – say:
 - OK, that’s all we’re going to do for that worksheet

- It seems like you had to work twice as hard on that one
- If I were in your shoes, I’d probably be feeling the same way

If student engages in off-task behavior that is incompatible with working on math, allow 1 minute to pass (2 vibrations) and if the student does not re-engage – say: “Ok, lets end this and take a break”
Specific Attention and Problem Behavior

BIOGRAPHY

Iride Piechocki was born in New Brunswick, NJ. She received her high school diploma in 1997 from Notre Dame High School in Elmira, NY. Iride graduated from Syracuse University in 2001 with a B.S. in Public Relations and a minor in Education Studies. She began working with at-risk youth while attending Syracuse, and has been working with this population in different capacities ever since. Iride received her M.S. in Educational Psychology in 2008. She completed her pre-doctoral internship with the Newark Public Schools in Newark, NJ. Her area of interest is with children and adolescents with emotional and behavioral difficulties. She is a candidate for the doctoral degree in psychology from the University of Southern Maine in August 2010.