Inequality quantified: Mind the gender gap

Despite improvements, female scientists continue to face discrimination, unequal pay and funding disparities.

Helen Shen

06 March 2013

As an aspiring engineer in the early 1970s, Lynne Kiorpes was easy to spot in her undergraduate classes. Among a sea of men, she and a handful of other women made easy targets for a particular professor at Northeastern University in Boston, Massachusetts. On the first day of class, “he looked around and said 'I
see women in the classroom. I don't believe women have any business in engineering, and I'm going to personally see to it that you all fail'."

He wasn't bluffing. All but one of the women in the class ultimately left engineering; Kiorpes went on to major in psychology.

Such blatant sexism is almost unthinkable today, says Kiorpes, now a neuroscientist at New York University. But Kiorpes, who runs several mentoring programmes for female students and postdoctoral fellows, says that subtle bias persists at most universities. And it drives some women out of science careers.

By almost any metric, women have made great gains in closing the scientific gender gap, but female scientists around the world continue to face major challenges. According to the US National Science Foundation, women earn about half the doctorates in science and engineering in the United States but comprise only 21% of full science professors and 5% of full engineering professors. And on average, they earn just 82% of what male scientists make in the United States — even less in Europe.

Scientific leaders say that they continue to struggle with ways to level the playing field and entice more women to enter and stay in science. "We are not drawing from our entire intellectual capital," says Hannah Valantine, dean of leadership and diversity at the Stanford School of Medicine in California. "We've got to put on the accelerator to evoke social change."

**Free podcast interview**

Uta Frith and Athene Donald reflect on science careers, families, quotas, biases and stereotypes.

One of the most persistent problems is that a disproportionate fraction of qualified women drop out of science careers in the very early stages (see 'Women in science'). A 2006 survey of chemistry doctoral students by the Royal Society of Chemistry in London, for example, found that more than 70% of first-year female students said that they planned a career in research; by their third year, only 37% had that goal, compared with 59% of males.

Many experts say that a big factor driving this trend is the lack of role models in the upper divisions of academia, which have been slow to change. The Royal Society of Chemistry has found, for instance, that female chemistry students are more likely than males to express low self-confidence and to report dissatisfaction with mentorship. Female students "conclude consciously and unconsciously that these careers are not for them because they don't see people like them", suggests Valantine. "That effect is..."
very, very powerful — this sense of not belonging.”

The attrition continues at later stages. In biology, for example, women comprised 36% of assistant professors and only 27% of tenure candidates in a 2010 study by the US National Research Council. “We’re not talking about a lack of talent here. Part of the story is that women leave earlier. In a sense, they give up on an academic career,” says Curt Rice, vice-president of research and development at the University of Tromsø in Norway, who has studied gender equality in US and European universities.

**Family values**

Many of the UK chemistry students viewed research as an all-consuming endeavour that was incompatible with raising a family. Meeting the demanding schedule of academic research can seem daunting for both mothers and fathers. But family choices seem to weigh more heavily on the career goals of women.

Law professor Mary Ann Mason at the University of California, Berkeley, and her colleagues have found that male and female postdocs without children are equally likely to decide against research careers, each leaving at a rate of about 20%. But female postdocs who become parents or plan to have children abandon research careers up to twice as often as men in similar circumstances.

“The plan to have children in the future, or already having them, is responsible for an enormous drop-off in the women who apply for tenure-track jobs,” says Wendy Williams, a psychologist at Cornell University in Ithaca, New York. Furthermore, women who do become faculty members in astronomy, physics and biology tend to have fewer children than their male colleagues — 1.2 versus 1.5, on average — and also have fewer children than they desire.

In response to these concerns, many universities have taken steps to establish family-friendly policies such as providing child-care assistance and extending tenure clocks for new parents. Shirley Tilghman, president of Princeton University in New Jersey, believes that such initiatives provide crucial support for women, but that other solutions are still needed. “I don’t think there’s a single obstacle,” she says. “I think there’s a whole series of phenomena that add up.”
Live issue

At Yale University in New Haven, Connecticut, microbiologist Jo Handelsman is one of many researchers who think that gender discrimination continues to be a significant part of the problem. In a much-talked-about experiment last year\(^6\), her team showed that science faculty members of both sexes exhibit unconscious biases against women. Handelsman’s group asked 127 professors of biology, chemistry and physics at 6 US universities to evaluate the CVs of two fictitious college students for a job as a laboratory manager. The professors said they would offer the student named Jennifer US$3,730 less per year than the one named John, even though the CVs were identical. The scientists also reported a greater willingness to mentor John than Jennifer. “If you extrapolate that to all the interactions that faculty have with students, it becomes very frightening,” says Handelsman.

Her findings match well with the results of a survey\(^7\) done in 2010 by the American Association for the Advancement of Science. Of the 1,300 or so people who responded, 52% of women said that they had encountered gender bias during their careers, compared with just 2% of men.

Still, other concrete evidence of bias is hard to find. Some measures show female scientists outperforming male rivals in landing interviews and job offers early in their careers. The National Research Council study\(^3\) showed that women accounted for 19% of the interview pool and received 32% of job offers for tenure-track electrical-engineering positions. Women fared just as well as men in tenure evaluations, but female assistant professors in many disciplines seemed less likely to reach tenure consideration compared with men.

Women face even more daunting odds in Spain. Men are 2.5 times more likely to rise to the rank of full professor than female colleagues with comparable age, experience and publication records\(^8\). Disparities can also be found in grant funding in some countries. In one frequently cited study\(^9\), Christine Wennerås and Agnes Wold at the University of Gothenburg in Sweden found in 1997 that female applicants for postdoctoral fellowships had to score 2.5 times higher on an index of publication impact to be judged the same as men.

Several groups, such as the UK Medical Research Council and biomedical research charity the Wellcome Trust, have since investigated their grant programmes and found negligible or very subtle effects of gender\(^10\). The Canadian Medical Research Council found no
differences in success rate in most of its research grant programmes, but reported lower success rates for women in some training grants\textsuperscript{11}. In the United States, women are slightly more successful than men in obtaining grants from the National Science Foundation, but the trend is reversed for the National Institutes of Health (NIH). The NIH also gives women smaller awards on average (see 'The funding gap').

Information provided to Nature by the NIH through a Freedom of Information Act request indicates that the percentage of women on review panels has improved marginally over the past decade, from 25\% in 2003 to 30\% in 2012. Those figures roughly parallel the percentage of women applying for and receiving grants in that time.

**Pay problems**

The inequalities also extend to salaries. In the European Union, female scientists earned on average between 25\% and 40\% less than male scientists in the public sector in 2006 (ref. 12). Although the average pay gap is smaller in the United States, the disparity is particularly large in physics and astronomy, where women earn 40\% less than men.

For young academic scientists, however, those differences may be fading. The National Research Council found an 8\% pay gap at the level of full science and engineering professors but no significant differences among junior faculty members\textsuperscript{3}. Some experts argue, however, that the salary gap may reflect other continued trends, such as the fact that a disproportionate share of women move into non-tenure positions or faculty jobs at lower-status universities.

Tilghman says that Princeton and many other universities have grown increasingly conscious of the need to track and rectify gender gaps in salary and other institutional support. “Absolutely, it needs eternal vigilance,” she says. “But we’re in a much better place.”

*Nature* 495, 22–24 (07 March 2013) doi:10.1038/495022a

**References**


Show context


Show context

**Related stories and links**

From nature.com

- **Women in science: Women’s work**
  06 March 2013

- **366 days: Nature’s 10**
  19 December 2012

- **Nature’s sexism**
  21 November 2012

- **How women scientists fare in the Arab world**
  31 October 2012

- **Science gender gap probed**
  07 February 2011

- **Gender stop-gaps**
09 June 2010
• Does gender matter?
12 July 2006
• Nature special: Women in science

From elsewhere
• Women, Minorities, and Persons with Disabilities in Science and Engineering (NSF)
• Association for Women in Science
• Women in Science, Statistics and Indicators (European Commission)
• Curt Rice’s blog

Author information

Affiliations
Helen Shen is an intern with Nature in Washington DC.

Comments

2013-03-06 06:50 AM
Tina Iverson said: As a women in science, I have read so many depressing statistics on women in science, but few of these compilations really address whether there is true bias.

So I did an experiment :-)

I am at a medical school where grant success is important for salary recovery and is the main factor in promotion and tenure.

In year 1, I submitted grants under my full name, and my first name is undoubtedly not gender neutral.

In year 2, I submitted grants using only my initials and my last name. My success rate went up 5-fold. This is an experiment with n=1, but I didn't want to repeat it.

However, in year 3, the university adopted an electronic grants system that (unbeknownst to me) automatically used my full first name again. In this blind study, my success rate went down 5-fold exactly coincident with changing back to a female name on the cover page of the application.

In year 4, I changed my name with the university to have it only be my initials, thus frustrating the automated system. My success rate went back up 5-fold.

I am the same applicant. The outcome only differed when the reviewers knew that I am female. While the replicates are low, I do not plan to repeat the experiment again...
Cathy Kessel said: The article above says:

"The plan to have children in the future, or already having them, is responsible for an enormous drop-off in the women who apply for tenure-track jobs," says Wendy Williams, a psychologist at Cornell University in Ithaca, New York.

It's helpful to know that, for Professor Williams, "tenure-track" generally seems to mean what many others call "tenured or tenure-track."

For example, in an article published last year, she and a co-author note that

"the percentage of female assistant professors in many STEM fields tracks closely with the proportion of recent PhDs in these fields (Nelson and Brammer, 2010)."

See p. 22 of Valla & Williams, 2012 in Journal of Women and Minorities in Science and Engineering, 18(1), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430517/. Nelson and Brammer's statistics concern positions at the top 100 US departments which were tenured or tenure-track.

It's also helpful to know that the 2010 National Research Council study concerned Research 1 universities and that it was not a longitudinal study. The report says:

"In biology and chemistry, the differences were statistically significant. In biology, 27 percent of the faculty considered for tenure were women, while women represented 36 percent of the assistant professor pool. In chemistry those numbers were 15 percent and 22 percent, respectively. This difference may suggest that female assistant professors were more likely than men to leave before being considered for tenure. It might also reflect the increased hiring of female assistant professors in recent years (compared with hiring 6 to 8 years ago). Note, however, that the probability of representation in the tenure pool in a cross-sectional study such as this is completely confounded with time." (pp. 148–149)

Vivien Zapf said: Juggling family and work need not be a sacrifice. When my children arrived I switched to part time. I thought at the time that my career would be permanently ruined. But by getting off useless committees, removing junk-work from my schedule, delegating and becoming more efficient, I found myself producing just as much science half-time as I had been full-time. When I returned to full-time I was twice as efficient.

Nobody can work 80 hours a day for their entire life. And most people working those hours are not very efficient. And recall that there is a reason sabbaticals are built into the academic career. We all need time to step back, take a break, re-evaluate, and spending time with our children can
Irene Newton said: It would be great to see the raw data behind these graphs - for example, one nagging question I have is whether or not the median and the mean reveal the same trends.

James Dwyer said: There's no question that women have been discriminated against in the past, and most likely are still, at least to some extent, in the present. Technically, however, simply quantifying inequities does not provide indisputable evidence of discrimination. A complete quantitative analysis would require that pay differences be normalized by some reliable measure of job performance – of value to the employer. Likewise, the number and value of research grants awarded should be normalized by the number of applications and, ideally some independent measure of their quality.

I realize this is an exceedingly sensitive issue – I apologize in advance to all those whose sensibilities I've offended – my intentions are purely technical. BTW, I'm a retired information systems analyst, concerned about my very capable granddaughters' future opportunities.

Richard Monastersky said: Those interested in checking out the data used for the NIH grant graphic can find them at these links: Research grant size by gender

Research grant numbers by gender

Success rates for research project grants

It is important to note that the charts for research project grants and research grants overlap in the categories the cover but they are not identical.

For all awards, here is the gender split in award size

Note that in all categories, women do not receive as much as men.

All these charts come from the NIH Data Book

The most recent NSF data on awards can be found in this report.
Kathleen Taylor said: It's not just science, it's science writing too. As an author of books published by a top university press, I shouldn't lack confidence, but it's hard not to waver when all the top science writers seem to be men. I can't help wondering if my books would have sold better if the name on the cover had been 'K.E.' Taylor rather than the clearly female 'Kathleen'. I chose the latter from sheer obstinacy, and because the status quo's never going to change if women keep taking the rational, self-interested option of making themselves seem more like men.

That's the trouble: it's in researchers' interests to keep their heads down and not rock the system, whether they're male or female.

How do we incentivise people to change the stereotypes? That needs the media, teachers, politicians and so on, as well as scientists.

Raquel Perales said: I am a PhD math student. I have read some articles like this one and always wonder why female mathematicians are never or rarely mentioned. Is there not enough data about us?